The four pieces of radio test equipment you really need
It's boring, but necessary. That just about sums up many peoples' attitude towards test equipment. Though it might not get as much use as the station transceiver, it can be worth its weight
in gold when something goes wrong and you need to fix it fast.
First up I'll describe the four items of radio test equipment you really need. Then I'll talk about other gear you might come across. Consider purchase of these instruments if you're really
into repair and construction. Or one comes along at a price too good to refuse.
1. Multimeter
The multimeter is the fundamental item of test equipment that all amateurs should own. The cheaper multimeters (around $30) allow voltage, current and resistance measurement as well as transistor, diode and audible continuity testing. More expensive instruments may include features such as capacitance measurement, frequency counters, bargraphs, temperature ranges, computer connections and mains voltage ratings.
Practical uses for multimeters around the shack include:
* Testing antenna and power connections with continuity tester function.
* Verifying transceivers are being fed with the correct voltage.
* Checking polarity of power connections.
* Measuring the current drawn by station equipment.
* Making voltage and current checks when developing or troubleshooting circuits.
Digital meters are so cheap these days that no amateur need be without one. They are easy to use and fairly accurate. There is no need to estimate the indicated value when the meter needle is between two closely-spaced markings. The cheapest digital meters also have functions (eg transistor tester) that are missing from analogue meters of equivalent price.
The rarer analogue meters have advantages over digital for some purposes. Analogue movements are particularly good at displaying varying voltages, such as audio signals. Also, when aligning transmitters, the fact that you’ve reached a peak (or dip) when making an adjustment is often more important than the actual value of the voltage (or current). An analogue movement is better at displaying such trends. Some of the better digital instruments have a bar graph function that combines the best features of both meters in one, but some users still prefer to keep the analogue meter handy.
Other features that amateurs should consider when buying a meter are: 20 amp DC current range (most HF transceivers draw up to 20 amps), audible continuity indicator (though missing from budget meters, it’s very useful), capacitance, inductance and frequency measurements. The last functions may not work as well on the multimeter as on specialised instruments designed for a single task, but are still useful for much amateur work, especially when budgets are tight.
2. VSWR/RF Power meters
VSWR and power meters cover a wide span. The cheaper meters provide relative indication of the standing wave ratio (SWR) only and do not measure transmitted power. Slightly more advanced
meters include RF power output and field strength indication as well. Most of these meters were designed for the 27 MHz CB market, but give useful relative indications up to 148 MHz.
At lower HF frequencies (around 3.5 MHz) the sensitivity of these meters falls off dramatically so they can be useless at low transmit powers.
The better meters, such as the Revex range, operate over a wider frequency range than the CB-type meters mentioned above. Their sensitivity is more uniform across the
specified frequency range, which may be as much as 1.8 to 1300 MHz. Accuracy is also better, and the use of N-type connectors reduce losses and impedance variations at UHF.
Practical uses for SWR and power meters include:
* SWR measurements - These are almost mandatory for anyone who installs or constructs antenna systems and wishes to obtain the best performance from them,
especially with modern equipment.
* RF power measurements - useful for testing transmitters or ensuring one is adhering to licensed power limits.
* Field strength measurements - useful for crude checks of handheld transceivers or antenna or feedline radiation. Measurements given are relative only.
Not all SWR/power meters include this function, but a separate field strength meter is very easy to build.
The SWR/power meter runs a close second to the multimeter as the test equipment item of most use around the amateur shack. The SWR function is most
important, as modern HF transceivers do not deliver their full output power if the SWR is high. For such tests, even a relative-reading meter is sufficient.
Those who repair, align or construct transmitting equipment are advised to obtain one of the better quality meters with output power indication.
3. Nano VNA
When the original version of this article was written 20 years ago this type instrument did not exist anywhere outside professional laboratories. Now, thanks to their low price and extreme
versatility, they are now in the top three test instruments every active ham in the 2020s should have.
What is a VNA? The name in full ('Vector Network Analyser') is hardly more informative than the abbreviation. Instead think of it as an all-in-one low power electronics and radio test set. Described
crudely it includes a low power transmitter (ie RF signal generator), a basic receiver with a spectrum analyser-style display and some clever measurement and display functions, including capacitance, inductance
and complex impedances.
Testing antennas for impedance, resonant frequency and VSWR is just one Nano VNA application. Others include testing components like capacitors and inductors. Or even networks of components (hence the name)
like filters made from industors, capacitors and crystals. A Nano VNA can be handy for receiver tests or even set up as a low power beacon transmitter. For more information see the videos on my
dedicated Nano VNA page.
4. An inductance - capacitance (LC) meter
OK, you can skip this if you don't do much board-level construction. But if you do one of these will be indispensible. At its most basic it lets you measure inductance and capacitance.
That is super useful if you are testing salvaged variable capacitors, winding inductors or making traps for a multband dipole or vertical antenna. Sure, many multimeters have a capacitance and occasionally
an inductance function, but they are often inaccurate at low values, like a few picofarads or a fraction of a microhenry. This is where a dedicated LC meter comes into its own. Avoid the very cheap
ones for best accuracy and measurement ability.
The videos below review some L-C meters and explain some of the things you can do with them.
This is the four main test equipment items you'll need. Now enjoy this look at other instruments that could also be useful.
Antenna analyser
Since the 1990s the antenna analyser has become popular, replacing both the dip oscillator and RF noise bridge. They are basically an all-in-one antenna test instrument. They
include a wide range variable frequency oscillator, bridge circuit, and, in more advanced units, an LCD screen that lets you plot the characteristics of the antenna you are measuring, for
instance an SWR curve and whether an antenna is purely resistive or exhibits some capacitive or inductive reactance. Serious antenna builders and experimenters will almost certainly
have an antenna analyser. In recent times though the Nano VNA (described above) does a lot of things the antenna analyser does so buy one of these first.
Oscilloscope
Leaving aside those lucky few with spectrum analysers, RF test sets and other exotic equipments with five figure price tags, the oscilloscope is the most advanced
piece of test equipment that most of us can reasonably aspire to own. They were previously known as CROs - for 'cathode ray oscilloscope', though modern units now have LCD screens.
If you intend to experiment with receivers and build the odd transmitter, you can get by without an oscilloscope. You can certainly get a homebrew CW, AM, FM or DSB station on the air without an
oscilloscope. However, if you wish to get the best performance and signal quality from homebrew or repaired equipment, one is the way to go. Amongst other things, a CRO allows you to see
waveforms from transmitters and oscillators. As you peak a tuned circuit, you can see the signal getting stronger. If you adjust a transmitter's power output setting too high, you
may see the waveform depart from a smooth sine wave to one with odd troughs and bumps. If using an RF power meter, the needle might suddenly jerk up, but the signal still sounds good
in the receiver. With an oscilloscope you see things you don't always hear on a receiver and, by moving the probe back from the output stage, you can identify the stages that are
introducing distortion.
Although they have come down a lot in price, good oscilloscopes are more expensive than any other test equipment item described here. They might not be used often. However they are extremely valuable when used properly, and can provide a better
insight into the actual operation of a circuit than any other instrument. For amateur purposes, maximum frequency that a CRO will go up to is important. The author's unit will
go up to over 50 MHz - sufficient for most amateur work. Dual trace CROs are preferred. Cheaper oscilloscopes, such as smaller units, may only be good for audio frequencies.
RF Signal Generator
RF signal generators provide a signal at a frequency set by the user. The best RF signal generators have good frequency coverage and stability, easy tuning (possibly via
keypad as well as knob), in-built digital frequency readout, synthesised frequency generation and calibrated output levels. These come in 19-inch rack cabinets,
and being intended for the professional, have price tags to match. For most amateur applications, however, cheaper hobbyist-type instruments will do the job quite nicely
and come up at hamfests. Alternatively you could build or buy a direct digital synthesiser (DDS) and put it in a box with a battery and RF attenuator.
Like the dip oscillator, RF signal generators are versatile instruments. However the traditional type of instrument are becoming less common new. Instead consider
a computer-controlled DDS unit which offers amazing frequency stability and accuracy for a fraction of the price of the old stand-alone units. Or the signal generator
functions in a Nano VNA. Still, if you want to
sweep across a large chunk of spectrum in a few seconds there's much to be said for the old style generator.
Amateur uses for RF signal generators include:
* Test oscillators for receiver construction and alignment. The ability to directly inject signals (rather than rely on RF pickup) and control output levels makes signal generators ideal.
* Receiver converters. A signal generator can be a makeshift local oscillator when testing converters or mixer stages.
* Certain antenna tests, especially when it is not desired to cause interference to others by radiating a high power signal.
* A BFO for AM receivers when receiving CW/SSB signals. The ability to vary RF output level and easier tuning on the signal generator makes this technique superior to using a dip oscillator.
* A low power transmitter. People have had CW contacts merely by connecting a keyed signal generator to an antenna! However best results will be achieved if attention is paid to matters
such as impedance matching to the antenna, quality of keying, frequency stability and suppression of harmonics.
Disclosure: I receive a small commission from items purchased through links on this site.
Items were chosen for likely usefulness and a satisfaction rating of 4/5 or better.
Dip oscillator
For many years the dip oscillator has been one of the main instruments used by the radio experimenter. People who experiment with antennas or build and align tuned circuits as used in
HF transmitters and receivers will get most use from them. Applications for dip oscillators include:
* Testing tuned circuits in receivers and transmitters. A dip oscillator can give a reasonable indication of resonant frequency.
* Checking resonance of antennas such as mobile whips.
* Measuring unknown capacitors and inductors (especially handy for un-marked variable capacitors and inductors).
* An RF signal generator to provide test signals to align homebrew receivers or IF strips.
* As a crude beat frequency oscillator (BFO) to allow an AM receiver to tune SSB/CW signals.
* To monitor the quality of AM transmissions and listen for clicks on CW – some dip oscillators have an earphone socket for this purpose.
* RF field strength meter for antenna, feedline and RF leakage tests (though the author prefers to use a separate instrument with antenna for this).
The dip oscillator does all this and more in one or two transistors. It consists of a wide range RF oscillator and a meter. When the dip oscillator's coil is brought close
to a tuned circuit that is resonant at the oscillator's frequency, the meter needle dips. What is happening is that the tuned circuit being tested is sucking RF
energy out of the dip oscillator's coil, thus causing the meter needle to dip towards zero. The resonant frequency of unknown tuned circuits can be determined by
holding the dip oscillator coil close to it and tuning the oscillator until the meter current drops. The dip oscillator’s tuning control is normally calibrated in MHz
to allow a direct reading of approximate resonant frequency.
Most dip oscillators (unlike the one pictured above) come in a long narrow case with plug-in coils on the end. This is so that they can be stuck deep into the innards of radio equipment.
Commercially-made dip oscillators can be hard to find and quite expensive new. These days the Nano VNA can do a lot of measurements the dip oscillator did. So you probably wouldn't
build one today unless you had a special interest in how we used to test radio circuits.
Other items
In addition to the test equipment items mentioned above, ownership of an HF communication receiver (preferably with a digital readout) would be an advantage. The general coverage receivers included
in recent HF transceivers are fine, though a separate receiver is preferred if your workshop is some distance from the main station. For VHF/UHF experimenters, a tunable VHF/UHF receiver will also
be desirable. Highly sought-after (and expensive) was the Icom R7000, though the much cheaper Uniden Bearcat UBC9000XLT scanner, though it lacks SSB and misses most UHF TV channels, should be
adequate for most. These are late 1980s-1990s receivers that still pop up on the second hand market. A wide-coverage software defined radio is another option that has become very cheap with USB
dongles. A frequency counter is nice to have, but not essential if you already have a good receiver with accurate digital readout.
Conclusion
I've looked at the items of test equipment that the amateur should own. If your interests are mainly operating, the first few items are only really necessary. However, if you'd
like to keep your equipment in top operating order, wish to make repairs, modifications or build new projects, all of the instruments described above will be useful. Ideas for simple test equipment
to build appear elsewhere on this and other websites.
An earlier version of this article appeared in Amateur Radio August 2000 with major additions and updates made since.